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Computational Science 

 Use of computer simulation as a tool for 
greater understanding of the real world 

– Complements experimentation and theory 
 Problems are increasingly computationally 

expensive 
– Large parallel machines needed to perform 

calculations 
– Critical to leverage parallelism in all phases 

 Data access is a huge challenge 
– Using parallelism to obtain performance 
– Finding usable, efficient, and portable 

interfaces 
– Understanding and tuning I/O 

Visualization of entropy in Terascale 

Supernova Initiative application. Image from 

Kwan-Liu Ma’s visualization team at UC Davis. 

IBM Blue Gene/Q system at Argonne 

National Laboratory. 
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Goals and Outline 

 Goals: 
– Share our view of HPC I/O hardware and software 
– Discuss interfaces that you can use to access I/O resources 
– Point to emerging and future trends in HPC I/O 

 

 Outline (roughly) 
– Ways of thinking about I/O systems 
– How It Works: HPC I/O Systems 
– Using I/O systems 
– Emerging and future trends 

 

 Notes 
– There will be slides that are hidden, don’t be alarmed 
– After the morning break, we’ll be looking through some of this code: 

http://www.mcs.anl.gov/mpi/tutorial/advmpi/mpi2tutorial.tar.gz 
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About Us (Before Lunch) 

 Rob Latham 
– Principle Software Development Specialist, MCS Division, Argonne 

National Laboratory 
– ROMIO MPI-IO implementation 
– Parallel netCDF high-level I/O library 
– Application outreach 

 Rob Ross 
– Computer Scientist, MCS Division, Argonne National Laboratory 
– Parallel Virtual File System 
– Deputy Director, Scientific Data Management, Analysis, and Visualization 

Institute (SDAV) 
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About Us (After Lunch) 

 Quincey Koziol 
– HDF5 
– Department of Energy Fast Forward: Exascale Storage 

 Avery Ching 
– Facebook 
– (In past life) HPC I/O and RobL’s office-mate 

 Rachana Ananthakrishnan 
– Globus 
– Jointly at Argonne 
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Thinking about HPC I/O Systems 



HPC I/O Systems 

HPC I/O system is the hardware and software that assists in 
accessing data during simulations and analysis and retaining 
data between these activities. 
 Hardware: disks, disk enclosures, servers, networks, etc. 
 Software: parallel file system, libraries, parts of the OS 

 
 Two “flavors” of I/O from applications: 

– Defensive: storing data to protect results from data loss due to system 
faults 

– Productive: storing/retrieving data as part of the scientific workflow 
– Note: Sometimes these are combined (i.e., data stored both protects 

from loss and is used in later analysis) 

 “Flavor” influences priorities: 
– Defensive I/O: Spend as little time as possible 
– Productive I/O: Capture provenance, organize for analysis 
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Data Complexity in Computational Science 

 Applications have data models 
appropriate to domain 

– Multidimensional typed arrays, images 
composed of scan lines, … 

– Headers, attributes on data 

 
 I/O systems have very simple data 

models 
– Tree-based hierarchy of containers 
– Some containers have streams of bytes 

(files) 
– Others hold collections of other 

containers (directories or folders) 

 
 Mapping from one to the other is 

increasingly complex. 

Right Interior 

Carotid Artery 

Platelet 

Aggregation 

Model complexity: 

Spectral element mesh (top) 

for thermal hydraulics 

computation coupled with 

finite element mesh (bottom) 

for neutronics calculation. 

Scale complexity: 

Spatial range from 

the reactor core in 

meters to fuel pellets 

in millimeters. Images from T. Tautges (ANL) (upper left), M. Smith 

(ANL) (lower left), and K. Smith (MIT) (right). 
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Data Volumes in Computational Science 

Science teams are routinely working with tens and hundreds of 
terabytes (TBs) of data. 

PI Project 
On-line Data 

(TBytes) 
Off-line Data 

(TBytes) 

Lamb Supernovae Astrophysics 100 400 

Khokhlov Combustion in Reactive Gases 1 17 

Lester CO2 Absorption 5 15 

Jordan Seismic Hazard Analysis 600 100 

Washington Climate Science 200 750 

Voth Energy Storage Materials 10 10 

Vashista Stress Corrosion Cracking 12 72 

Vary Nuclear Structure and Reactions 6 30 

Fischer Reactor Thermal Hydraulic Modeling 100 100 

Hinkel Laser-Plasma Interactions 60 60 

Elghobashi Vaporizing Droplets in a Turbulent Flow 2 4 

Data requirements for select 2012 INCITE applications at ALCF (BG/P) 
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Data Volumes in Computational Science 

It’s not just checkpoints – scientists are reading large volumes 
of data into HPC systems as part of their science. 

Top 10 data producer/consumers instrumented with Darshan over the month of July, 2011.  
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Views of Data Access in HPC Systems 

Two useful ways of thinking about data access are the “logical” 
view, considering data models in use, and the “physical” view, 
the components that data resides on and passes through. 

I/O Hardware 

Application 

Storage Data Model 

Transformations 

Application Data Model 

I/O Hardware 

Compute Node Memory 

System Network Data 

Movement 

Logical (data model) 

view of data access. 
Physical (hardware) 

view of data access. 
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Data Access in Past HPC Systems* 

For many years, application teams wrote their own translations 
from their data models into files, and hardware model was 
relatively simple. 

I/O Hardware 

Application 

Files (POSIX) 

Hand-coded Formatting 

Application Data Model 

Servers with RAID 

Compute Node Memory 

Ethernet Switch Data 

Movement 

Logical (data model) 

view of data access. 
Physical (hardware) 

view of data access. 

* We’re simplifying the story here somewhat … 
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Data Access in Current Large-scale Systems 

Current systems have greater support on the logical side, more 
complexity on the physical side. 

I/O Hardware 

Application 

Files (POSIX) 

I/O Transform Layer(s) 

Data Model Library 

SAN and RAID Enclosures 

Compute Node Memory 

Internal System Network(s) 

Data 

Movement 

Logical (data model) 

view of data access. 
Physical (hardware) 

view of data access. 

I/O Gateways 

External Sys. Network(s) 

I/O Servers 
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Thinking about HPC I/O Systems 

 Two (intertwined) challenges when thinking about data 
access: 

– Mapping application data model onto storage 
– Driving all the components so you don’t have to wait too long for I/O 

 Often these two can be at odds 
– “Richer” data models might require more I/O 
– Transformations that make writing fast might make reading slow  

(or vice versa) 

 Lots of computer science R&D has gone into tackling these 
two problems 
 

 Next we will dive down into some of the details of HPC I/O 
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How It Works: HPC I/O Systems 



How It Works 

 HPC I/O systems provide a  
file system view of stored data 

– File (i.e., POSIX) model of access 
– Shared view of data across the system 
– Access to same data from the outside  

(e.g., login nodes, data movers) 
 

 Topics: 
– How is data stored and organized? 
– What support is there for application 

data models? 
– How does data move from clients to 

servers? 
– How is concurrent access managed? 
– What transformations are typically 

applied? 

 

File system view consists of 

directories (a.k.a. folders) and files. 

Files are broken up into regions 

called extents or blocks. 
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Storing and Organizing Data: Storage Model 

HPC I/O systems are built around a parallel file system that 
organizes storage and manages access. 
 
 Parallel file systems (PFSes) are distributed systems that 

provide a file data model (i.e., files and directories) to users 
 Multiple PFS servers manage access to storage, while PFS 

client systems run applications that access storage 
 PFS clients can access storage resources in parallel! 
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Reading and Writing Data (etc.) 

PFS servers manage local 

storage, services incoming 

requests from clients. 

PFS client software 

requests operations on 

behalf of applications. 

Requests are sent as 

messages (RPC-like), often 

to multiple servers. 

Requests pass over the 

interconnect, thus each 

request incurs some 

latency. 

RAID enclosures protect 

against individual disk 

failures and map regions of 

data onto specific devices. 
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Leadership Systems have an additional HW layer 

Compute nodes run 

application processes. Data 

model software also runs 

here, and some I/O 

transformations are performed 

here. 

I/O forwarding nodes (or 

I/O gateways) shuffle data 

between compute nodes 

and external resources, 

including storage.  

Storage nodes run the 

parallel file system. 

External 

network 
Disk 

arrays 
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Request Size and I/O Rate 

Interconnect latency has a significant impact on effective rate 
of I/O. Typically I/Os should be in the O(Mbytes) range. 

Tests run on 2K processes of IBM Blue Gene/P at ANL. 
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Data Distribution in Parallel File Systems 

Distribution across multiple servers allows concurrent access.  

21 



Storing and Organizing Data: Application Model(s) 

Application data models are supported via libraries that map 
down to files (and sometimes directories). 
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HPC I/O Software Stack 

The software used to provide data model support and to 
transform I/O to better perform on today’s I/O systems is often 
referred to as the I/O stack. 

Data Model Libraries map 

application abstractions onto 

storage abstractions and 

provide data portability. 
 

HDF5, Parallel netCDF,  ADIOS 

I/O Middleware organizes 

accesses from many processes, 

especially those using collective  

I/O. 
 

MPI-IO, GLEAN, PLFS 

 

I/O Forwarding transforms I/O 

from many clients into fewer, 

larger request; reduces lock 

contention; and bridges 

between the HPC system and 

external storage. 
 

IBM ciod, IOFSL, Cray DVS 

 

Parallel file system maintains 

logical file model and provides 

efficient access to data. 
 

PVFS, PanFS, GPFS, Lustre I/O Hardware 

Application 

Parallel File System 

Data Model Support 

Transformations 

23 



How It Works: HPC I/O Performance 



Managing Concurrent Access 

Files are treated like global shared memory regions. Locks are 
used to manage concurrent access: 
 Files are broken up into lock units 
 Clients obtain locks on units that they will access before 

I/O occurs 
 Enables caching on clients as well (as long as client has a lock, 

it knows its cached data is valid) 
 Locks are reclaimed from clients when others desire access  

If an access touches any 

data in a lock unit, the 

lock for that region must 

be obtained before access 

occurs. 
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Implications of Locking in Concurrent Access 

26 



I/O Transformations 

Software between the application and the PFS performs 
transformations, primarily to improve performance. 

Process 0 Process 1 Process 2

File foo

Process 0 Process 1 Process 2

Folder foo/

File data.0

File index.0

File data.1

File index.1

File data.2

File index.2

 Goals of transformations: 
– Reduce number of operations to 

PFS (avoiding latency) 
– Avoid lock contention 

(increasing level of concurrency) 
– Hide number of clients (more on 

this later) 

 With “transparent” 
transformations, data ends 
up in the same locations in 
the file 

– i.e., the file system is still aware 
of the actual data organization 

When we think about I/O 

transformations, we consider 

the mapping of data between 

application processes and 

locations in file. 
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Reducing Number of Operations 

Since most operations go over the network, I/O to a PFS incurs 
more latency than with a local FS. Data sieving is a technique to 
address I/O latency by combining operations: 
 When reading, application process reads a large region 

holding all needed data and pulls out what is needed 
 When writing, three steps required (below) 

Step 1: Data in region to be 

modified are read into 

intermediate buffer (1 read). 

Step 2: Elements to be 

written to file are replaced 

in intermediate buffer. 

Step 3: Entire region is 

written back to storage with 

a single write operation. 
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Avoiding Lock Contention 

To avoid lock contention when writing to a shared file, we can 
reorganize data between processes. Two-phase I/O splits I/O 
into a data reorganization phase and an interaction with the 
storage system (two-phase write depicted): 
 Data exchanged between processes to match file layout 
 0th phase determines exchange schedule (not shown) 

 
 

Phase 1: Data are exchanged between 

processes based on organization of data 

in file. 

Phase 2: Data are written to file (storage 

servers) with large writes, no contention. 
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Two-Phase I/O Algorithms 
(or, You don’t want to do this yourself…) 

For more information, see W.K. Liao and A. Choudhary, “Dynamically Adapting File Domain Partitioning Methods for Collective  

I/O Based on Underlying Parallel File System Locking Protocols,” SC2008, November, 2008. 
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S3D Turbulent Combustion Code 

 S3D is a turbulent combustion 
application using a direct numerical 
simulation solver from Sandia 
National Laboratory 

 Checkpoints consist of four global 
arrays 

– 2 3-dimensional 
– 2 4-dimensional 
– 50x50x50 fixed 

subarrays 
 

Thanks to Jackie Chen (SNL), Ray Grout 

(SNL), and Wei-Keng Liao (NWU) for 

providing the S3D I/O benchmark, Wei-

Keng Liao for providing this diagram, C. 

Wang, H. Yu, and K.-L. Ma of UC Davis for 

image. 
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Impact of Transformations on S3D I/O 

 Testing with PnetCDF output to single file, three configurations,  
16 processes 

– All MPI-IO optimizations (collective buffering and data sieving) disabled 
– Independent I/O optimization (data sieving) enabled 
– Collective I/O optimization (collective buffering, a.k.a. two-phase I/O) enabled 

Coll. Buffering and 
Data Sieving 
Disabled 

Data Sieving 
Enabled 

Coll. Buffering 
Enabled (incl. 
Aggregation) 

POSIX writes 102,401 81 5 

POSIX reads 0 80 0 

MPI-IO writes 64 64 64 

Unaligned in file 102,399 80 4 

Total written (MB) 6.25 87.11 6.25 

Runtime (sec) 1443 11 6.0 

Avg. MPI-IO time 
per proc (sec) 

1426.47 4.82 0.60 
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Transformations in the I/O Forwarding Step 

Compute nodes I/O forwarding nodes (or 

I/O gateways) shuffle data 

between compute nodes 

and external resources, 

including storage.  

Storage nodes 

External 

network 
Disk 

arrays 
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Transformations in the I/O Forwarding Step 

Another way of transforming data access by clients is by 
introducing new hardware: I/O forwarding nodes.  
 
 I/O forwarding nodes serve a number of functions: 

– Bridge between internal and external networks 
– Run PFS client software, allowing lighter-weight solutions internally 
– Perform I/O operations on behalf of multiple clients 

 

 Transformations can take many forms: 
– Performing one file open on behalf of many processes 
– Combining small accesses into larger ones 
– Caching of data (sometimes between I/O forwarding nodes) 
Note: Current vendor implementations don’t aggressively aggregate. 

 
 Compute nodes can be allocated to provide a similar service 
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“Not So Transparent” Transformations 

Some transformations result in file(s) with different data 
organizations than the user requested. 

 
 If processes are writing to different files, then  

they will not have lock conflicts 
 What if we convert writes to the same file into writes to 

different files? 
– Need a way to group these files together 
– Need a way to track what we put where 
– Need a way to reconstruct on reads 

 Parallel Log-Structured File System software does this 
 

See J. Bent et al. PLFS: a checkpoint filesystem for parallel applications. SC2009. Nov. 2009. 
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Parallel Log Structured File System 

Process 0 Process 1 Process 2

File foo

Process 0 Process 1 Process 2

Folder foo/

File data.0

File index.0

File data.1

File index.1

File data.2

File index.2

See J. Bent et al. PLFS: a checkpoint filesystem for parallel applications. SC2009. Nov. 2009. 

Application intends to interleave data 

regions into single file. 

 

Transparent transformations such as data 

sieving and two-phase I/O preserve data 

order on the file system. 

PLFS remaps I/O into separate log files 

per process, with indices capturing 

locations of data in these files. 

 

PLFS software needed when reading to 

reconstruct the file view. 
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Why not just write a file per process? 

File per process vs. shared file access as function 

of job size on Intrepid Blue Gene/P system 
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I/O Transformations and the Storage Data Model 

Historically, the storage data model has been the POSIX file 
model, and the PFS has been responsible for managing it. 

 
 Transparent transformations work within these limitations 
 When data model libraries are used: 

– Transforms can take advantage of more knowledge 

• e.g., dimensions of multidimensional datasets 

– Doesn’t matter so much whether there is a single file underneath 
– Or in what order the data is stored 
– As long as portability is maintained 

 Single stream of bytes in a file is inconvenient for parallel 
access 

– Future designs might provide a different underlying model 
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How It Works: Today’s I/O Systems 



An Example HPC I/O Software Stack 

This example I/O stack captures the software stack used in 
some applications on the IBM Blue Gene/Q system at Argonne.  

Parallel netCDF is used in 

numerous climate and weather 

applications running on DOE 

systems. 
Built in collaboration with NWU. 

ciod is the I/O forwarding 

implementation on the IBM Blue 

Gene/P and Blue Gene/Q 

systems. 

ROMIO is the basis for virtually 

all MPI-IO implementations on 

all platforms today and the 

starting point for nearly all MPI-

IO research. 
Incorporates research from NWU and 

patches from vendors. 

GPFS is a production parallel 

file system provided by IBM. 

I/O Hardware 

Application 

ciod 

GPFS 

ROMIO MPI-IO 

Parallel netCDF 
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Mira Blue Gene/Q and its Storage System 
BG/Q Optical

2x16 Gbit/sec

QDR InfiniBand

32 Gbit/sec

Serial ATA

6.0 Gbit/sec

Gateway nodes

run parallel file system

client software and

forward I/O operations

from HPC clients.

384 16-core PowerPC 

A2 nodes with 16 Gbytes

of RAM each

Commodity 

network  primarily 

carries storage traffic.

QDR Infiniband 

Federated Switch

Storage nodes

run parallel file system 

software and manage

incoming FS traffic

from gateway nodes.

SFA12KE hosts VM 

running GPFS servers

Enterprise storage 

controllers and large racks 

of disks are connected via

InfiniBand.

32 DataDirect SFA12KE; 

560 3 Tbyte drives + 32 

200 GB SSD; 16 

InfiniBand ports per pair

Compute nodes

run applications and

some I/O middleware.

768K cores with 1 Gbyte 

of RAM each
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Takeaways 

 Parallel file systems provide the underpinnings of HPC I/O 
solutions 
 

 Data model libraries provide alternative data models for 
applications 

– PnetCDF and HDF5 will both be discussed in detail later in the day 
 

 Characteristics of PFSes lead to the need for transformations 
in order to achieve high performance 

– Implemented in a number of different software layers 
– Some preserving file organization, others breaking it 

 

 Number of layers complicates performance debugging 
– Some ways of approaching this discussed later in the day 
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Building an I/O API 



Conway’s Game of Life 

 We use Conway’s Game of Life as a simple example to 
illustrate the program issues common to many codes that use 
regular meshes, such as PDE solvers 

– Allows us to concentrate on the I/O issues  

 
 Game of Life is a cellular automaton 

– Described in 1970 Scientific American 
– Many interesting behaviors; see: 

• http://www.ibiblio.org/lifepatterns/october1970.html 

44 
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Rules for Life 

 Matrix values A(i,j) initialized to 1 (live) or 0 (dead) 
 In each iteration, A(i,j) is set to 

– 1 (live) if either 

• the sum of the values of its 8 neighbors is 3, or 

• the value was already 1 and the sum of its 8 neighbors is 2 or 3 

– 0 (dead) otherwise 

45 

j 

i 

j-1 j+1 

i+1 

i-1 
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Implementing Life 

 For the non-parallel version, we: 
– Allocate a 2D matrix to hold state 

• Actually two matrices, and we will swap them between steps 

– Initialize the matrix 

• Force boundaries to be “dead” 

• Randomly generate states inside 

– At each time step: 

• Calculate each new cell state based on previous cell states (including 
neighbors) 

• Store new states in second matrix 

• Swap new and old matrices 

46 

All code examples in this tutorial can be downloaded from 

www.mcs.anl.gov/mpi/tutorial/advmpi/mpi2tutorial.tar.gz 
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Steps in Designing a Parallel Game of Life 

 Start with the “global” array as the main object 
– Natural for output – result we’re computing 

 Describe decomposition in terms of global array 
 Describe communication of data, still in terms of the global 

array 
 Define the “local” arrays and the communication between 

them by referring to the global array 

47 
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Step 1: Description of Decomposition 

 By rows (1D or row-block) 
– Each process gets a group of adjacent rows 

48 

Columns 

R
o
w

s
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Step 2: Communication 

 “Stencil” requires read access to data from neighbor cells 

 We allocate extra space on each process to store neighbor cells 
 Use send/recv or RMA to update prior to computation  

49 
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Step 3: Define the Local Arrays 

 Correspondence between the local and global array 
 “Global” array is an abstraction 

– There is no one global array allocated anywhere 

 Instead, we compute parts of it (the local arrays) on each 
process 

 Provide ways to output the global array by combining the 
values on each process (parallel I/O!) 
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Boundary Regions 

 In order to calculate next state of cells in edge rows, need data 
from adjacent rows 

 Need to communicate these regions at each step 

51 
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Building an I/O API for Game of Life 



Supporting Checkpoint/Restart 

 For long-running applications, the cautious user checkpoints 
 Application-level checkpoint involves the application saving its 

own state 
– Portable! 

 A canonical representation is preferred 
– Independent of number of processes 

 Restarting is then possible 
– Canonical representation aids restarting with a different number of 

processes 

 Also eases data analysis (when using same output) 
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Defining a Checkpoint 

 Need enough to restart 
– Header information 

• Size of problem (e.g. matrix dimensions) 

• Description of environment (e.g. input parameters) 

– Program state 

• Should represent the global (canonical) view of the data 

 Ideally stored in a convenient container 
– Single file! 

 If all processes checkpoint at once, naturally a parallel, 
collective operation 
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Life Checkpoint/Restart API 

 Define an interface for checkpoint/restart for the row-block 
distributed Life code 

 Five functions: 
– MLIFEIO_Init 
– MLIFEIO_Finalize 
– MLIFEIO_Checkpoint 
– MLIFEIO_Can_restart 
– MLIFEIO_Restart 

 All functions are collective 
– i.e., all processes must make the call 

 
  We can implement API for different back-end formats 
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Life Checkpoint 

 MLIFEIO_Checkpoint(char    *prefix, 

                   int    **matrix, 

                   int      rows, 

                   int      cols, 

                   int      iter, 

                   MPI_Info info); 

 
 Prefix is used to set filename 
 Matrix is a reference to the data to store 
 Rows, cols, and iter describe the data (header) 
 Info is used for tuning purposes 
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Life stdout “checkpoint” 

 The first implementation is one that simply prints out the 
“checkpoint” in an easy-to-read format 

 MPI standard does not specify that all stdout will be collected 
in any particular way 

– Pass data back to rank 0 for  
printing 

– Portable! 
– Not scalable, but ok for the  

purpose of stdio 

# Iteration 9 
 
  1:     **          **                **                ** *               
  2:   * **          * *              *  *      ****   *     *    ***    ** 
  3:    **             **              **      *    *  * **  *           ** 
  4:                   **                      *   * ** ** ***              
  5:                   * *    **           **  * *  ***  * * *              
  6:                *     *   **           *        *  *  ** *              
  7:                ***                     *    ** *     ***               
  8:         ***  *   ** ***                *     * *****  *** ***          
  9:            *** *                        * ** *   ***    ** **          
 10:        * *  *    *                                 ***  * *            
 11:         *     **          **           **            * *               
 12:                * **      ****           *    ** ****   *               
 13:                 **       *** * **        *     *** *   *               
 14:                         *    ** *       *      * ***                   
 15:            ** **        ******          *      *   *                   
 16:             ****       *****      *      *    *                        
 17:      ***     *** *              ***       ****                         
 18:      ***      **  **                                                   
 19:         *    **          **          *           **              *     
 20:  *           *          * **        **                          ***    
 21: * *  * **          *  * * **                     ***           * * **  
 22: * *   **     *    ****    *          **           *      *    ***  **  
 23:  *           **    **** ***   ***      *                * *    **    * 
 24:              ***      *   *           **                 *      **** * 
 25:                        ***            **                         ****  

57 



stdio Life Checkpoint Code Walkthrough 

 Points to observe: 
– All processes call checkpoint routine 

• Collective I/O from the viewpoint of the program 

– Interface describes the global array 
– Output is independent of the number of processes 

See mlife-io-stdout.c pp. 1-3 for code example. 
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File: mlife-io-stdout.c Page 1 of 8

1: /* SLIDE: stdio Life Checkpoint Code Walkthrough */

2: /* -*- Mode: C; c-basic-offset:4 ; -*- */

3: /*

4:  *  (C) 2004 by University of Chicago.

5:  *      See COPYRIGHT in top-level directory.

6:  */

7:

8: #include <stdio.h>

9: #include <stdlib.h>

10: #include <unistd.h>

11:

12: #include <mpi.h>

13:

14: #include "mlife.h"

15: #include "mlife-io.h"

16:

17: /* stdout implementation of checkpoint (no restart) for MPI Life

18:  *

19:  * Data output in matrix order: spaces represent dead cells,

20:  * ’*’s represent live ones.

21:  */

22: static int MLIFEIO_Type_create_rowblk(int **matrix, int myrows,

23:                                       int cols,

24:                                       MPI_Datatype *newtype);

25: static void MLIFEIO_Row_print(int *data, int cols, int rownr);

26: static void MLIFEIO_msleep(int msec);

27:

28: static MPI_Comm mlifeio_comm = MPI_COMM_NULL;
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File: mlife-io-stdout.c Page 2 of 8

29:       /* SLIDE: stdio Life Checkpoint Code Walkthrough */

30: int MLIFEIO_Init(MPI_Comm comm)

31: {

32:     int err;

33:

34:     err = MPI_Comm_dup(comm, &mlifeio_comm);

35:

36:     return err;

37: }

38:

39: int MLIFEIO_Finalize(void)

40: {

41:     int err;

42:

43:     err = MPI_Comm_free(&mlifeio_comm);

44:

45:     return err;

46: }
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File: mlife-io-stdout.c Page 3 of 8

47:       /* SLIDE: Life stdout "checkpoint" */

48: /* MLIFEIO_Checkpoint

49:  *

50:  * Parameters:

51:  * prefix - prefix of file to hold checkpoint (ignored)

52:  * matrix - data values

53:  * rows   - number of rows in matrix

54:  * cols   - number of columns in matrix

55:  * iter   - iteration number of checkpoint

56:  * info   - hints for I/O (ignored)

57:  *

58:  * Returns MPI_SUCCESS on success, MPI error code on error.

59:  */

60: int MLIFEIO_Checkpoint(char *prefix, int **matrix, int rows,

61:                        int cols, int iter, MPI_Info info)

62: {

63:     int err = MPI_SUCCESS, rank, nprocs, myrows, myoffset;

64:     MPI_Datatype type;

65:

66:     MPI_Comm_size(mlifeio_comm, &nprocs);

67:     MPI_Comm_rank(mlifeio_comm, &rank);

68:

69:     myrows   = MLIFE_myrows(rows, rank, nprocs);

70:     myoffset = MLIFE_myrowoffset(rows, rank, nprocs);

71:
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File: mlife-io-stdout.c Page 4 of 8

72:       /* SLIDE: Describing Data */

73:     if (rank != 0) {

74:         /* send all data to rank 0 */

75:

76:         MLIFEIO_Type_create_rowblk(matrix, myrows, cols, &type);

77:         MPI_Type_commit(&type);

78:         err = MPI_Send(MPI_BOTTOM, 1, type, 0, 1, mlifeio_comm);

79:         MPI_Type_free(&type);

80:     }

81:     else {

82:         int i, procrows, totrows;

83:

84:         printf("\033[H\033[2J# Iteration %d\n", iter);

85:

86:         /* print rank 0 data first */

87:         for (i=1; i < myrows+1; i++) {

88:             MLIFEIO_Row_print(&matrix[i][1], cols, i);

89:         }

90:         totrows = myrows;

91:

62 



File: mlife-io-stdout.c Page 5 of 8

92:       /* SLIDE: Describing Data */

93:         /* receive and print others’ data */

94:         for (i=1; i < nprocs; i++) {

95:                     int j, *data;

96:

97:             procrows = MLIFE_myrows(rows, i, nprocs);

98:             data = (int *) malloc(procrows * cols * sizeof(int));

99:

100:             err = MPI_Recv(data, procrows * cols, MPI_INT, i, 1,

101:                            mlifeio_comm, MPI_STATUS_IGNORE);

102:

103:             for (j=0; j < procrows; j++) {

104:                 MLIFEIO_Row_print(&data[j * cols], cols,

105:                                   totrows + j + 1);

106:             }

107:             totrows += procrows;

108:

109:             free(data);

110:         }

111:     }

112:

113:     MLIFEIO_msleep(250); /* give time to see the results */

114:

115:     return err;

116: }
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Describing Data 

 Lots of rows, all the same size 
– Rows are all allocated as one big block 
– Perfect for MPI_Type_vector 

MPI_Type_vector(count = myrows,  
blklen = cols, stride = cols+2, MPI_INT, &vectype); 

– Second type gets memory offset right (allowing use of MPI_BOTTOM in 
MPI_File_write_all) 
MPI_Type_hindexed(count = 1, len = 1, 

disp = &matrix[1][1], vectype, &type); 

matrix[1][0..cols+1] 

matrix[myrows][0..cols+1] 

See mlife-io-stdout.c pp. 4-6 for code example. 

Need to save this 

region in the array 
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File: mlife-io-stdout.c Page 6 of 8

117:       /* SLIDE: Describing Data */

118: /* MLIFEIO_Type_create_rowblk

119:  *

120:  * Creates a MPI_Datatype describing the block of rows of data

121:  * for the local process, not including the surrounding boundary

122:  * cells.

123:  *

124:  * Note: This implementation assumes that the data for matrix is

125:  *       allocated as one large contiguous block!

126:  */

127: static int MLIFEIO_Type_create_rowblk(int **matrix, int myrows,

128:                                       int cols,

129:                                       MPI_Datatype *newtype)

130: {

131:     int err, len;

132:     MPI_Datatype vectype;

133:     MPI_Aint disp;

134:

135:     /* since our data is in one block, access is very regular! */

136:     err = MPI_Type_vector(myrows, cols, cols+2, MPI_INT,

137:                           &vectype);

138:     if (err != MPI_SUCCESS) return err;

139:

140:     /* wrap the vector in a type starting at the right offset */

141:     len = 1;

142:     MPI_Address(&matrix[1][1], &disp);

143:     err = MPI_Type_hindexed(1, &len, &disp, vectype, newtype);

144:

145:     MPI_Type_free(&vectype); /* decrement reference count */
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File: mlife-io-stdout.c Page 7 of 8

146:

147:     return err;

148: }

149:

150: static void MLIFEIO_Row_print(int *data, int cols, int rownr)

151: {

152:     int i;

153:

154:     printf("%3d: ", rownr);

155:     for (i=0; i < cols; i++) {

156:         printf("%c", (data[i] == BORN) ? ’*’ : ’ ’);

157:     }

158:     printf("\n");

159: }

160:

161: int MLIFEIO_Can_restart(void)

162: {

163:     return 0;

164: }

165:

166: int MLIFEIO_Restart(char *prefix, int **matrix, int rows,

167:                     int cols, int iter, MPI_Info info)

168: {

169:     return MPI_ERR_IO;

170: }
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Parallelizing our I/O API 



Parallel I/O and MPI 

 The stdio checkpoint routine works but is not parallel 
– One process is responsible for all I/O 
– Wouldn’t want to use this approach for real 

 How can we get the full benefit of a parallel file system? 
– We first look at how parallel I/O works in MPI 
– We then implement a fully parallel checkpoint routine 

 MPI is a good setting for parallel I/O 
– Writing is like sending and reading is like receiving 
– Any parallel I/O system will need: 

• collective operations 

• user-defined datatypes to describe both memory and file layout 

• communicators to separate application-level message passing from I/O-related 
message passing 

• non-blocking operations 

– i.e., lots of MPI-like machinery 
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Collective I/O 

 A critical optimization in parallel I/O 
 All processes (in the communicator) must call the collective  

I/O function 
 Allows communication of “big picture” to file system 

– Framework for I/O optimizations at the MPI-IO layer 
– e.g., two-phase I/O 

Small individual 

requests 

Large collective 

access 
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Collective MPI I/O Functions 

 Not going to go through the MPI-IO API in excruciating detail 
– Can talk during hands-on 
 

 MPI_File_write_at_all, etc. 
– _all indicates that all processes in the group specified by the 

communicator passed to MPI_File_open will call this function 
– _at indicates that the position in the file is specified as part of the call; 

this provides thread-safety and clearer code than using a separate 
“seek” call 

 Each process specifies only its own access information 
– the argument list is the same as for the non-collective functions 
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MPI-IO Life Checkpoint Code Walkthrough 

 Points to observe: 
– Use of a user-defined MPI datatype to handle the local array 
– Use of MPI_Offset for the offset into the file 

• “Automatically” supports files larger than 2GB if the underlying file system 
supports large files 

– Collective I/O calls 

• Extra data on process 0 

See mlife-io-mpiio.c pp. 1-2 for code example. 
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Data Layout in MPI-IO Checkpoint File 

Rows Columns Iteration 

Global Matrix 

File Layout 

Note: We store the matrix in global, canonical order with no ghost cells. 

See mlife-io-mpiio.c pp. 1-9 for code example. 

P0 

P1 

P2 

P3 
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Life MPI-IO Checkpoint/Restart 

 We can map our collective checkpoint directly to a single 
collective MPI-IO file write: MPI_File_write_at_all 

– Process 0 writes a little extra (the header) 

 On restart, two steps are performed: 
– Everyone reads the number of rows and columns from the header in the 

file with MPI_File_read_at_all 

• Sometimes faster to read individually and bcast (see later example) 

– If they match those in current run, a second collective call used to read 
the actual data 

• Number of processors can be different 

See mlife-io-mpiio.c pp. 3-6 for code example. 
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File: mlife-io-mpiio.c Page 3 of 9

56:       /* SLIDE: Life MPI-IO Checkpoint/Restart */

57: int MLIFEIO_Checkpoint(char *prefix, int **matrix, int rows,

58:                        int cols, int iter, MPI_Info info)

59: {

60:     int err;

61:     int amode = MPI_MODE_WRONLY | MPI_MODE_CREATE |

62:                 MPI_MODE_UNIQUE_OPEN;

63:     int rank, nprocs;

64:     int myrows, myoffset;

65:

66:     MPI_File fh;

67:     MPI_Datatype type;

68:     MPI_Offset myfileoffset;

69:     char filename[64];

70:

71:     MPI_Comm_size(mlifeio_comm, &nprocs);

72:     MPI_Comm_rank(mlifeio_comm, &rank);

73:

74:     myrows   = MLIFE_myrows(rows, rank, nprocs);

75:     myoffset = MLIFE_myrowoffset(rows, rank, nprocs);

76:

77:     snprintf(filename, 63, "%s-%d.chkpt", prefix, iter);

78:     err = MPI_File_open(mlifeio_comm, filename, amode, info, &fh);

79:     if (err != MPI_SUCCESS) {

80:         fprintf(stderr, "Error opening %s.\n", filename);

81:         return err;

82:     }

83:

84:
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File: mlife-io-mpiio.c Page 4 of 9

85: /* SLIDE: Life MPI-IO Checkpoint/Restart */

86:     if (rank == 0) {

87:         MLIFEIO_Type_create_hdr_rowblk(matrix, myrows, &rows,

88:                                        &cols, &iter, &type);

89:         myfileoffset = 0;

90:     }

91:     else {

92:         MLIFEIO_Type_create_rowblk(matrix, myrows, cols, &type);

93:         myfileoffset = ((myoffset * cols) + 3) * sizeof(int);

94:     }

95:

96:     MPI_Type_commit(&type);

97:     err = MPI_File_write_at_all(fh, myfileoffset, MPI_BOTTOM, 1,

98:                                     type, MPI_STATUS_IGNORE);

99:     MPI_Type_free(&type);

100:

101:     err = MPI_File_close(&fh);

102:     return err;

103: }

104:
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File: mlife-io-mpiio.c Page 5 of 9

105:       /* SLIDE: Life MPI-IO Checkpoint/Restart */

106: int MLIFEIO_Restart(char *prefix, int **matrix, int rows,

107:                     int cols, int iter, MPI_Info info)

108: {

109:     int err, gErr;

110:     int amode = MPI_MODE_RDONLY | MPI_MODE_UNIQUE_OPEN;

111:     int rank, nprocs;

112:     int myrows, myoffset;

113:     int buf[3]; /* rows, cols, iteration */

114:

115:     MPI_File fh;

116:     MPI_Datatype type;

117:     MPI_Offset myfileoffset;

118:     char filename[64];

119:

120:     MPI_Comm_size(mlifeio_comm, &nprocs);

121:     MPI_Comm_rank(mlifeio_comm, &rank);

122:

123:     myrows   = MLIFE_myrows(rows, rank, nprocs);

124:     myoffset = MLIFE_myrowoffset(rows, rank, nprocs);

125:

126:     snprintf(filename, 63, "%s-%d.chkpt", prefix, iter);

127:     err = MPI_File_open(mlifeio_comm, filename, amode, info, &fh);

128:     if (err != MPI_SUCCESS) return err;

129:

130:     /* check that rows and cols match */

131:     err = MPI_File_read_at_all(fh, 0, buf, 3, MPI_INT,

132:                                MPI_STATUS_IGNORE);

133:
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File: mlife-io-mpiio.c Page 6 of 9

134: /* SLIDE: Life MPI-IO Checkpoint/Restart */

135:     /* Have all process check that nothing went wrong */

136:     MPI_Allreduce(&err, &gErr, 1, MPI_INT, MPI_MAX, mlifeio_comm);

137:     if (gErr || buf[0] != rows || buf[1] != cols) {

138:         if (rank == 0) fprintf(stderr, "restart failed.\n");

139:         return MPI_ERR_OTHER;

140:     }

141:

142:     MLIFEIO_Type_create_rowblk(matrix, myrows, cols, &type);

143:     myfileoffset = ((myoffset * cols) + 3) * sizeof(int);

144:

145:     MPI_Type_commit(&type);

146:     err = MPI_File_read_at_all(fh, myfileoffset, MPI_BOTTOM, 1,

147:                                type, MPI_STATUS_IGNORE);

148:     MPI_Type_free(&type);

149:

150:     err = MPI_File_close(&fh);

151:     return err;

152: }

153:
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Describing Header and Data 

 Data is described just as before 
 Create a struct wrapped around this to describe the header as 

well: 
– no. of rows 
– no. of columns 
– Iteration no. 
– data (using previous type) 

 

See mlife-io-mpiio.c pp. 7 for code example. 
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File: mlife-io-mpiio.c Page 7 of 9

154:       /* SLIDE: Describing Header and Data */

155: /* MLIFEIO_Type_create_hdr_rowblk

156:  *

157:  * Used by process zero to create a type that describes both

158:  * the header data for a checkpoint and its contribution to

159:  * the stored matrix.

160:  *

161:  * Parameters:

162:  * matrix  - pointer to the matrix, including boundaries

163:  * myrows  - number of rows held locally

164:  * rows_p  - pointer to # of rows in matrix (so we can get its

165:  *           address for use in the type description)

166:  * cols_p  - pointer to # of cols in matrix

167:  * iter_p  - pointer to iteration #

168:  * newtype - pointer to location to store new type ref.

169:  */

170: static int MLIFEIO_Type_create_hdr_rowblk(int **matrix,

171:                                           int myrows,

172:                                           int *rows_p,

173:                                           int *cols_p,

174:                                           int *iter_p,

175:                                           MPI_Datatype *newtype)

176: {

177:     int err;

178:     int lens[4] = { 1, 1, 1, 1 };

179:     MPI_Aint disps[4];

180:     MPI_Datatype types[4];

181:     MPI_Datatype rowblk;

182:
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File: mlife-io-mpiio.c Page 8 of 9

183: /* SLIDE: Describing Header and Data */

184:     MLIFEIO_Type_create_rowblk(matrix, myrows, *cols_p, &rowblk);

185:     

186:     MPI_Address(rows_p, &disps[0]);

187:     MPI_Address(cols_p, &disps[1]);

188:     MPI_Address(iter_p, &disps[2]);

189:     disps[3] = (MPI_Aint) MPI_BOTTOM;

190:     types[0] = MPI_INT;

191:     types[1] = MPI_INT;

192:     types[2] = MPI_INT;

193:     types[3] = rowblk;

194:

195: #if defined(MPI_VERSION) && MPI_VERSION >= 2

196:     err = MPI_Type_create_struct(3, lens, disps, types, newtype);

197: #else

198:     err = MPI_Type_struct(3, lens, disps, types, newtype);

199: #endif

200:

201:     MPI_Type_free(&rowblk);

202:

203:     return err;

204: }

205:
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MPI-IO Takeaway 

 Sometimes it makes sense to build a custom library that uses 
MPI-IO (or maybe even MPI + POSIX) to write a custom format 

– e.g., a data format for your domain already exists, need parallel API 

 
 We’ve only touched on the API here 

– There is support for data that is noncontiguous in file and memory 
– There are independent calls that allow processes to operate without 

coordination 

 
 In general we suggest using data model libraries 

– They do more for you 
– Performance can be competitive 
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Using Data Model Libraries: 

A Parallel netCDF Example 



HPC I/O Software Stack 

The software used to provide data model support and to 
transform I/O to better perform on today’s I/O systems is often 
referred to as the I/O stack. 

Data Model Libraries map 

application abstractions onto 

storage abstractions and 

provide data portability. 
 

HDF5, Parallel netCDF,  ADIOS 

I/O Middleware organizes 

accesses from many processes, 

especially those using collective  

I/O. 
 

MPI-IO, GLEAN, PLFS 

 

I/O Forwarding transforms I/O 

from many clients into fewer, 

larger request; reduces lock 

contention; and bridges 

between the HPC system and 

external storage. 
 

IBM ciod, IOFSL, Cray DVS 

 

Parallel file system maintains 

logical file model and provides 

efficient access to data. 
 

PVFS, PanFS, GPFS, Lustre I/O Hardware 

Application 

Parallel File System 

Data Model Support 

Transformations 
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Data Model Libraries 

 Scientific applications work with structured data and desire 
more self-describing file formats 

 PnetCDF and HDF5 are two popular “higher level” I/O libraries 
– Abstract away details of file layout 
– Provide standard, portable file formats 
– Include metadata describing contents 

 For parallel machines, these use MPI and probably MPI-IO 
– MPI-IO implementations are sometimes poor on specific platforms, in 

which case libraries might directly call POSIX calls instead 
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netCDF Data Model 

The netCDF model provides a means for storing multiple,  
multi-dimensional arrays in a single file. 
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Parallel netCDF (PnetCDF) 

 (Serial) netCDF 
– API for accessing multi-dimensional data sets 
– Portable file format 
– Popular in both fusion and climate communities 

 
 Parallel netCDF 

– Very similar API to netCDF 
– Tuned for better performance in today’s 

computing environments 
– Retains the file format so netCDF and PnetCDF 

applications can share files 
– PnetCDF builds on top of any MPI-IO 

implementation 

ROMIO 

PnetCDF 

Lustre 

Cluster 

IBM MPI 

PnetCDF 

ciod 

IBM Blue Gene 

GPFS 
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PnetCDF Life Checkpoint/Restart Code Walkthrough 

 Stores matrix as a two-dimensional array of integers 
– Same canonical ordering as in MPI-IO version 

 Iteration number stored as an attribute 

See mlife-io-pnetcdf.c pp. 1-5 for code example. 

integer iter 

P0 

P1 

P2 

P3 

integer “matrix” [rows][cols] 

Iteration 

Global Matrix 
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File: mlife-io-pnetcdf.c Page 3 of 7

45:       /* SLIDE: PnetCDF Life Checkpoint Code Walkthrough */

46: int MLIFEIO_Checkpoint(char *prefix, int **matrix, int rows,

47:                        int cols, int iter, MPI_Info info)

48: {

49:     int err;

50:     int cmode = 0;

51:     int rank, nprocs;

52:     int myrows, myoffset;

53:

54:     int ncid, varid, coldim, rowdim, dims[2];

55:     MPI_Offset start[2];

56:     MPI_Offset count[2];

57:     int i, j, *buf;

58:     char filename[64];

59:

60:     MPI_Comm_size(mlifeio_comm, &nprocs);

61:     MPI_Comm_rank(mlifeio_comm, &rank);

62:

63:     myrows   = MLIFE_myrows(rows, rank, nprocs);

64:     myoffset = MLIFE_myrowoffset(rows, rank, nprocs);

65:

66:     snprintf(filename, 63, "%s-%d.nc", prefix, iter);

67:

68:     err = ncmpi_create(mlifeio_comm, filename, cmode, info, &ncid);

69:     if (err != 0) {

70:         fprintf(stderr, "Error opening %s.\n", filename);

71:         return MPI_ERR_IO;

72:     }

73:
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Describing Subarray Access in PnetCDF 

 PnetCDF provides calls for reading/writing subarrays in a 
single (collective) call: 

 ncmpi_put_vara_all(ncid, 

                    varid, 

                    start[], count[], 

                    buf, count, 

                    datatype) 

P

1 

Global Matrix in PnetCDF File 

Local Sub-matrix 

in memory 
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File: mlife-io-pnetcdf.c Page 4 of 7

74: /* SLIDE: PnetCDF Life Checkpoint Code Walkthrough */

75:     ncmpi_def_dim(ncid, "col", cols, &coldim);

76:     ncmpi_def_dim(ncid, "row", rows, &rowdim);

77:     dims[0] = coldim;

78:     dims[1] = rowdim;

79:     ncmpi_def_var(ncid, "matrix", NC_INT, 2, dims, &varid);

80:

81:     /* store iteration as global attribute */

82:     ncmpi_put_att_int(ncid, NC_GLOBAL, "iter", NC_INT, 1, &iter);

83:

84:     ncmpi_enddef(ncid);

85:

86:     start[0] = 0; /* col start */

87:     start[1] = myoffset; /* row start */

88:     count[0] = cols;

89:     count[1] = myrows;

90:

91:     MLIFEIO_Type_create_rowblk(matrix, myrows, cols, &type);

92:     MPI_Type_commit(&type);

93:

94:     ncmpi_put_vara_all(ncid, varid, start, count, MPI_BOTTOM, 1,

95:                        type);

96:

97:     MPI_Type_free(&type);

98:

99:     ncmpi_close(ncid);

100:     return MPI_SUCCESS;

101: }

102:
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File: mlife-io-pnetcdf.c Page 5 of 7

103: /* SLIDE: PnetCDF Life Checkpoint Code Walkthrough */

104: int MLIFEIO_Restart(char *prefix, int **matrix, int rows,

105:                     int cols, int iter, MPI_Info info)

106: {

107:     int err = MPI_SUCCESS;

108:     int rank, nprocs;

109:     int myrows, myoffset;

110:     int flag;

111:

112:     int cmode = 0;

113:     int ncid, varid, dims[2];

114:     MPI_Offset start[2];

115:     MPI_Offset count[2];

116:     MPI_Offset coldimsz, rowdimsz;

117:     int i, j, *buf;

118:     char filename[64];

119:

120:     MPI_Comm_size(mlifeio_comm, &nprocs);

121:     MPI_Comm_rank(mlifeio_comm, &rank);

122:

123:     myrows   = MLIFE_myrows(rows, rank, nprocs);

124:     myoffset = MLIFE_myrowoffset(rows, rank, nprocs);

125:

126:     snprintf(filename, 63, "%s-%d.nc", prefix, iter);

127:     err = ncmpi_open(mlifeio_comm, filename, cmode, info, &ncid);

128:     if (err != 0) {

129:         fprintf(stderr, "Error opening %s.\n", filename);

130:         return MPI_ERR_IO;

131:     }
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Discovering Variable Dimensions 

 Because netCDF is self-describing, applications can inquire 
about data in netCDF files: 
 

 err = ncmpi_inq_dimlen(ncid, 

                         dims[0], 

                         &coldimsz); 

 
 Allows us to discover the dimensions of our matrix at restart 

time 

See mlife-io-pnetcdf.c pp. 6-7 for code example. 

98 



File: mlife-io-pnetcdf.c Page 6 of 7

132: /* SLIDE: Discovering Variable Dimensions */

133:     err = ncmpi_inq_varid(ncid, "matrix", &varid);

134:     if (err != 0) {

135:         return MPI_ERR_IO;

136:     }

137:

138:     /* verify that dimensions in file are same as input row/col */

139:     err = ncmpi_inq_vardimid(ncid, varid, dims);

140:     if (err != 0) {

141:         return MPI_ERR_IO;

142:     }

143:

144:     err = ncmpi_inq_dimlen(ncid, dims[0], &coldimsz);

145:     if (coldimsz != cols) {

146:         fprintf(stderr, "cols does not match\n");

147:         return MPI_ERR_IO;

148:     }

149:

150:     err = ncmpi_inq_dimlen(ncid, dims[1], &rowdimsz);

151:     if (rowdimsz != rows) {

152:         fprintf(stderr, "rows does not match\n");

153:         return MPI_ERR_IO;

154:     }

155:
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File: mlife-io-pnetcdf.c Page 7 of 7

156:        /* SLIDE: Discovering Variable Dimensions */

157:     buf = (int *) malloc(myrows * cols * sizeof(int));

158:     flag = (buf == NULL);

159:     /* See if any process failed to allocate memory */

160:     MPI_Allreduce(MPI_IN_PLACE, &flag, 1, MPI_INT, MPI_LOR, 

161:                   mlifeio_comm);

162:     if (flag) {

163:         return MPI_ERR_IO;

164:     }

165:

166:     start[0] = 0; /* col start */

167:     start[1] = myoffset; /* row start */

168:     count[0] = cols;

169:     count[1] = myrows;

170:     ncmpi_get_vara_int_all(ncid, varid, start, count, buf);

171:

172:     for (i=0; i < myrows; i++) {

173:         for (j=0; j < cols; j++) {

174:             matrix[i+1][j] = buf[(i*cols) + j];

175:         }

176:     }

177:

178:     free(buf);

179:

180:     return MPI_SUCCESS;

181: }

100 



Takeaway from PnetCDF Game of Life Example 

 PnetCDF abstracts away the file system model, giving us 
something closer to (many) domain models 

– Arrays 
– Types 
– Attributes 

 Captures metadata for us (e.g., rows, columns, types) and 
allows us to programmatically explore datasets 

 Uses MPI-IO underneath, takes advantage of data sieving and 
two-phase I/O when possible 
 

 Next we will spend a bit of time on PnetCDF itself 
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Thanks to Wei-Keng Liao, Alok Choudhary, and Kui 
Gao (NWU) for their help in the development of 
PnetCDF. 
 
www.mcs.anl.gov/parallel-netcdf 
 

How It Works: The Parallel netCDF 

Interface and File Format 

http://www.mcs.anl.gov/parallel-netcdf
http://www.mcs.anl.gov/parallel-netcdf
http://www.mcs.anl.gov/parallel-netcdf


Record Variables in netCDF 

 Record variables are defined to have a 
single “unlimited” dimension 

– Convenient when a dimension size is 
unknown at time of variable creation 

 Record variables are stored after all the 
other variables in an interleaved format 

– Using more than one in a file is likely to result 
in poor performance due to number of 
noncontiguous accesses 
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Inside PnetCDF Define Mode 

 In define mode (collective) 
– Use MPI_File_open to create file at create time 
– Set hints as appropriate (more later) 
– Locally cache header information in memory 

• All changes are made to local copies at each process 

 At ncmpi_enddef  
– Process 0 writes header with MPI_File_write_at  
– MPI_Bcast result to others 
– Everyone has header data in memory, understands placement of all 

variables 

• No need for any additional header I/O during data mode! 
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Inside PnetCDF Data Mode 

 Inside ncmpi_put_vara_all (once per variable)  
– Each process performs data conversion into internal buffer 
– Uses MPI_File_set_view  to define file region 

• Contiguous region for each process in FLASH case 

– MPI_File_write_all collectively writes data 

 At ncmpi_close  
– MPI_File_close ensures data is written to storage 

 
 MPI-IO performs optimizations 

– Two-phase possibly applied when writing variables 

 MPI-IO makes PFS calls 
– PFS client code communicates with servers and stores data 
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Inside Parallel netCDF:  Jumpshot view 

1: Rank 0 write header 

(independent I/O) 

2: Collectively write 

app grid, AMR data 

3: Collectively 

 write 4 variables 

4: Close file 

I/O  

Aggregator 

Collective write File open File close Indep. write 
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Parallel-NetCDF write-combining optimization 

 netCDF variables laid out 
contiguously 

 Applications typically store data in 
separate variables 

– temperature(lat, long, elevation) 
– Velocity_x(x, y, z, timestep) 

 Operations posted independently, 
completed collectively 

– Defer, coalesce synchronization 
– Increase average request size 

ncmpi_iput_vara(ncfile, varid1,  

 &start, &count, &data,  

 count, MPI_INT, &requests[0]);    

ncmpi_iput_vara(ncfile, varid2,  

 &start,&count, &data, 

 count, MPI_INT, &requests[1]);    

ncmpi_wait_all(ncfile, 2, requests, statuses); 

HEADER VAR1 VAR2 
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Example: FLASH Astrophysics 

 FLASH is an astrophysics code for 
studying events such as supernovae 
– Adaptive-mesh hydrodynamics 
– Scales to 1000s of processors 
– MPI for communication 

 Frequently checkpoints: 
– Large blocks of typed variables 

from all processes 
– Portable format 
– Canonical ordering (different than 

in memory) 
– Skipping ghost cells 

Ghost cell 

Stored element 

… 
Vars 0, 1, 2, 3, … 23 
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FLASH Astrophysics and the write-combining 

optimization 

 FLASH writes one variable at a time 
 Could combine all  4D variables (temperature, pressure, etc) into 

one 5D variable 
– Altered file format (conventions) requires updating entire analysis toolchain 

 Write-combining provides improved performance with same file 
conventions 

– Larger requests, less synchronization.  
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HACC: understanding cosmos via simulation 

 “Cosmology = Physics + Simulation “ 
(Salman Habib) 

 Sky surveys collecting massive amounts 
of data 

– (~100 PB) 

 Understanding of these massive datasets 
rests on  modeling distribution of cosmic 
entities 

 Seed simulations with initial conditions 
 Run for 13 billion (simulated) years 
 Comparison with observed data 

validates physics model.  
 I/O challenges: 

– Checkpointing 
– analysis 
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Parallel NetCDF Particle Output 

Collaboration with Northwestern and Argonne 

 Metadata, index, and particle 
data 

 Self-describing portable format 
 Can be read with different 

number of processes than 
written 

 Can be queried for particles 
within spatial bounds 

File schema for analysis output enables spatial 
queries of particle data in a high-level self-
describing format. 

111 



HACC particles with pnetcdf: metadata (1/2) 

/* class constructor creates dataset */ 

IO::IO(int mode, char *filename, MPI_Comm comm) { 

 ncmpi_create(comm, filename, NC_64BIT_DATA, 

                       MPI_INFO_NULL, &ncfile); 

} 

/* describe simulation metadata, not pnetcdf metadata */ 

void IO::WriteMetadata(char *notes, float *block_size,  

 float *global_min, int *num_blocks,  

 int first_time_step, int last_time_step, 

 int this_time_step, int num_secondary_keys, 

       char **secondary_keys) { 

  ncmpi_put_att_text(ncfile, NC_GLOBAL, "notes",  

 strlen(notes), notes); 

  ncmpi_put_att_float(ncfile, NC_GLOBAL, "global_min_z", 

  NC_FLOAT, 1,&global_min[2]); 

} 
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HACC particles with pnetcdf: metadata (2/2) 

void IO::DefineDims() {  

  ncmpi_def_dim(ncfile, "KeyIndex", key_index, 

 &dim_keyindex); 

  char str_attribute[100 = 

    "num_blocks_x * num_blocks_y * num_blocks_z * 

 num_kys"; 

 

  /* variable with no dimensions: “scalar” */ 

  ncmpi_def_var(ncfile, "KeyIndex", NC_INT, 0,  

  NULL, &var_keyindex); 

  ncmpi_put_att_text(ncfile, var_keyindex, "Key_Index", 

                   strlen(str_attribute), str_attribute); 

  /* pnetcdf knows shape and type, but application must 

      annotate with units */ 

  strcpy(unit, “km/s”); 

  ncmpi_def_var(ncfile, “Velocity”, NC_FLOAT,  

 ndims, dimpids, &var_velid); 

  ncmpi_put_att_text(ncfile, var_velid, 

 “unit_of_velocity”, strlen(unit), unit); 

} 
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HACC particles with pnetcdf: data  

void IO::WriteData(int num_particles, float *xx, float *yy, float 

*zz, 

                   float *vx, float *vy, float *vz, 

                   float *phi, int64_t *pid, float *mins,  

      float *maxs) { 

 // calculate total number of particles and individual array offsets 

  nParticles = num_particles; // typecast to MPI_Offset 

  myOffset   = 0; // particle offset of this process 

  MPI_Exscan(&nParticles, &myOffset, 1, MPI_OFFSET, MPI_SUM, comm); 

  MPI_Allreduce(MPI_IN_PLACE, &nParticles, 1, MPI_OFFSET,  

 MPI_SUM, comm); 

   

  start[0] = myOffset;  start[1] = 0; 

  count[0] = num_particles;  count[1] = 3;  /* ZYX dimensions */ 

 

  // write "Velocity" in parallel, partitioned  

  // along dimension nParticles 

  // "Velocity" is of size nParticles x nDimensions 

  //  data_vel array set up based on method parameters 

  ncmpi_put_vara_float_all(ncfile, var_velid, start, count, 

                                 &data_vel[0][0]); 

   

} 
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Parallel-NetCDF Inquiry routines 

 Talked a lot about writing, but what about reading? 
 Parallel-NetCDF QuickTutorial contains examples of several 

approaches to reading and writing 
 General approach 

1. Obtain simple counts of entities (similar to MPI datatype “envelope”) 
2. Inquire about length of dimensions 
3. Inquire about type, associated dimensions of variable 

 Real application might assume convention,  skip some steps 
 A full parallel reader would, after determining shape of 

variables, assign regions of variable to each rank 
(“decompose”).  

– Next slide focuses only on inquiry routines.  (See website for I/O code) 
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Parallel NetCDF Inquiry Routines 
i nt  mai n(i nt  argc, char  **argv) {
    /* extracted from

     *http://trac.mcs.anl.gov/projects/parallel-netcdf/wiki/QuickTutorial

     * "Reading Data via standard API" */

    MPI_Init(&argc, &argv);

    ncmpi_open(MPI_COMM_WORLD, argv[1], NC_NOWRITE, 

            MPI_INFO_NULL, &ncfile);

    /* reader knows nothing about dataset, but we can interrogate with

     * query routines: ncmpi_inq tells us how many of each kind of

     * "thing" (dimension, variable, attribute) we will find in file */

     

    ncmpi_inq(ncfile, &ndims, &nvars, &ngatts, &has_unlimited);

    /* no communication needed after ncmpi_open: all processors have a

     * cached view of the metadata once ncmpi_open returns */

    dim_sizes = calloc(ndims, si zeof (MPI_Offset));
    /* netcdf dimension identifiers are allocated sequentially starting

     * at zero; same for variable identifiers */

    f or (i=0; i<ndims; i++)  {
        ncmpi_inq_dimlen(ncfile, i, &(dim_sizes[i]) );

    }

    f or (i=0; i<nvars; i++) { 
        ncmpi_inq_var(ncfile, i, varname, &type, &var_ndims, dimids,

                &var_natts);

        printf("var i abl e %d has name %s wi t h %d di mensi ons"  

                "  and %d at t r i but es\ n" , 
                i, varname, var_ndims, var_natts);

    }

    ncmpi_close(ncfile);

    MPI_Finalize();

}
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PnetCDF Wrap-Up 

 PnetCDF gives us 
– Simple, portable, self-describing container for data 
– Collective I/O 
– Data structures closely mapping to the variables described 

 If PnetCDF meets application needs, it is likely to give good 
performance 

– Type conversion to portable format does add overhead 

 Some limits on (old, common CDF-2) file format: 
– Fixed-size variable:  < 4 GiB 
– Per-record size of record variable: < 4 GiB 
– 232 -1 records  
– New extended file format to relax these limits (CDF-5, released in 

pnetcdf-1.1.0, November 2009) 
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Additional I/O Interfaces 
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Data Model Libraries map 

application abstractions onto 

storage abstractions and 

provide data portability. 
 

HDF5, Parallel netCDF,  ADIOS 

I/O Middleware organizes 

accesses from many processes, 

especially those using collective  

I/O. 
 

MPI-IO, GLEAN, PLFS 

 

I/O Forwarding transforms I/O 

from many clients into fewer, 

larger request; reduces lock 

contention; and bridges 

between the HPC system and 

external storage. 
 

IBM ciod, IOFSL, Cray DVS 

 

Parallel file system maintains 

logical file model and provides 

efficient access to data. 
 

PVFS, PanFS, GPFS, Lustre I/O Hardware 

Application 

Parallel File System 

Data Model Support 

Transformations 



Data Model I/O libraries 

 Parallel-NetCDF: http://www.mcs.anl.gov/pnetcdf 
 HDF5: http://www.hdfgroup.org/HDF5/ 
 NetCDF-4: http://www.unidata.ucar.edu/software/netcdf/netcdf-4/ 

– netCDF API with HDF5 back-end 

 ADIOS: http://adiosapi.org 
– Configurable (xml) I/O approaches 

 SILO: https://wci.llnl.gov/codes/silo/ 
– A mesh and field library on top of HDF5 (and others) 

 H5part: http://vis.lbl.gov/Research/AcceleratorSAPP/ 
– simplified HDF5 API for particle simulations 

 GIO: https://svn.pnl.gov/gcrm 
– Targeting geodesic grids as part of GCRM 

 PIO: 
–  climate-oriented I/O library; supports raw binary, parallel-netcdf, or serial-

netcdf (from master) 

 … Many more: consider existing libs before deciding to make your own. 

119 

http://www.mcs.anl.gov/pnetcdf
http://www.hdfgroup.org/HDF5/
http://www.unidata.ucar.edu/software/netcdf/netcdf-4/
http://www.unidata.ucar.edu/software/netcdf/netcdf-4/
http://www.unidata.ucar.edu/software/netcdf/netcdf-4/
http://www.unidata.ucar.edu/software/netcdf/netcdf-4/
http://adiosapi.org/
http://adiosapi.org/
https://wci.llnl.gov/codes/silo/
https://wci.llnl.gov/codes/silo/
https://svn.pnl.gov/gcrm
https://svn.pnl.gov/gcrm


Thanks to the following for much of this material: 

Understanding I/O Behavior and 

Performance 

For more information, see: 
- P. Carns et al. Understanding and improving computational science storage 

access through continuous characterization. ACM TOS. 2011. 
- P. Carns et al. Production I/O characterization on the Cray XE6. CUG 2013. 

May, 2013. 

Phil Carns, Kevin Harms, Charles 
Bacon, Sam Lang, Bill Allcock 
Math and Computer Science Division and 
Argonne Leadership Computing Facility 
Argonne National Laboratory 

Yushu Yao and Katie Antypas 
National Energy Research Scientific 
Computing Center 
Lawrence Berkeley National Laboratory 
 



Characterizing Application I/O 

How are applications using the I/O system, and how successful 
are they at attaining high performance? 
 

Darshan (Sanskrit for “sight”) is a tool we developed for I/O characterization 
at extreme scale: 
 No code changes, small and tunable memory footprint (~2MB default) 
 Characterization data aggregated and compressed prior to writing 
 Captures: 

– Counters for file I/O and MPI-IO calls,  
some PnetCDF and HDF5 calls 

– Counters for unaligned, sequential,  
consecutive, and strided access 

– Timing of opens, closes, first and last  
reads and writes 

– Cumulative data read and written 
– Histograms of access, stride, datatype,  

and extent sizes 
 

sequential 

consecutive 

strided 

1 2 3 

1 2 3 

1 2 3 
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How Darshan Works 

 Use PMPI and ld wrappers to intercept I/O functions 
– Requires re-linking, but no code modification 
– Can be transparently included in mpicc 
– Compatible with a variety of compilers 

 Record statistics independently at each process 
– Compact summary rather than verbatim record 
– Independent data for each file 

 Collect, compress, and store results at shutdown time 
– Aggregate shared file data using custom MPI reduction operator 
– Compress remaining data in parallel with zlib 
– Write results with collective MPI-IO 
– Result is a single gzip-compatible file containing characterization 

information 

 Works for Linux clusters, IBM Blue Gene/P and /Q, Cray XE6 
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Darshan Job Summary 
Job summary tool shows 
characteristics “at a 
glance”: 
 Early indication of I/O 

behavior and where to 
explore in further 

 Example: Mismatch 
between number of files 
(R) vs. number of header 
writes (L) 

– The same header is being 
overwritten 4 times in each 
data file 
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Looking for I/O Performance Problems 

 Many I/O problems can be seen from these logs 
 More formally, we can look at specific metrics that we believe 

indicate performance problems 
– Administrators can filter logs using metrics to identify applications that 

may benefit from tuning assistance 

 We explored three example metrics that can be quickly 
computed from Darshan log data: 

– Applications that read more bytes of data from the file system than 
were present in the file 

– Percentage of I/O time spent performing metadata operations such as 
open(), close(), stat(), and seek() exceeds a threshold (e.g., 25%) 

– Jobs that wrote less than 1 MiB per operation to shared files without 
using any collective operations 

– Data from Hopper Cray XE6 at NERSC, 261,890 jobs analyzed 
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Redundant Read Traffic 

 Scenario: Applications that read more bytes of data from the 
file system than were present in the file 

– Even with caching effects, this type of job can cause disruptive I/O 
network traffic through redundant file system transfers 

– Candidates for aggregation or collective I/O 

 
 Summary of analysis: 

– Threshold: > 1 TiB 
– Matching jobs: 671 

 Top Example: 
– Scale: 6,138 processes 
– Run time: 6.5 hours 
– Avg. I/O time per process: 27 minutes 
– Read 548.6 TiB of data from a 1.2 TiB collection of read-only files 
– Used 8 KiB read operations and generated 457x redundant read traffic 
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Time in Metadata Operations 

 Scenario: Very high percentage of  I/O time spent performing 
metadata operations such as open(), close(), stat(), and seek() 

– Close() cost can be misleading due to write-behind cache flushing 
– Most relevant for jobs that performed a significant amount of I/O 
– Candidates for coalescing files and eliminating extra metadata calls 

 
 Summary of analysis: 

– Thresholds: 
   meta_time_per_proc > 30 sec && nprocs >= 192 && meta_ratio >= 25% 
– Matching jobs: 252 

 Top Example: 
– Scale: 40,960 processes 
– Run time: 229 seconds 
– Max. I/O time per process: 103 seconds 
– 99% of I/O time in metadata operations 
– Generated 200,000+ files with 600,000+ write() and 600,000+ stat() calls 
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Small Writes to Shared Files 

 Scenario: Small writes can contribute to poor performance 
– We searched for jobs that wrote less than 1 MiB per operation to shared 

files without using any collective operations 
– Candidates for collective I/O or batching/buffering of write operations 

 
 Summary of analysis: 

– Thresholds: > 100 million small writes && 0 collective writes 
– Matching jobs: 230 

 Top Example: 
– Scale: 128 processes 
– Run time: 30 minutes 
– Max. I/O time per process: 12 minutes 
– Issued 5.7 billion writes to shared files, each less than 100 bytes in size 
– Averaged just over 1 MiB/s per process during shared write phase 
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Performance Debugging: Simulation Output 

 HSCD combustion physics application 
– HSCD was writing 2-3 files per process with up to 32,768 cores  
– Darshan attributed 99% of the I/O time to metadata (on Intrepid BG/P) 
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Simulation Output (continued) 

 With help from ALCF catalysts and Darshan instrumentation, 
we developed an I/O strategy that used MPI-IO collectives and 
a new file layout to reduce metadata overhead 

 Impact: 41X improvement in I/O throughput for production 
application 

HSCD I/O performance with 32,768 cores 
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Performance Debugging: An Analysis I/O Example 

 
 
 

 Variable-size analysis data requires headers to contain size 
information 

 Original idea: all processes collectively write headers, followed 
by all processes collectively write analysis data 

 Use MPI-IO, collective I/O, all optimizations 
 4 GB output file (not very large) 
 Why does the I/O take so long  

in this case? 

… 

Processes I/O Time (s) Total Time (s) 

8,192 8 60 

16,384 16 47 

32,768 32 57 
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An Analysis I/O Example (continued) 

 Problem: More than 50% of time spent writing 
output at 32K processes. Cause: Unexpected 
RMW pattern, difficult to see at the application 
code level, was identified from Darshan 
summaries. 

 What we expected to see, read data followed 
by write analysis: 
 

 What we saw instead: RMW during the writing shown by overlapping red 
(read) and blue (write), and a very long write as well. 
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An Analysis I/O Example (continued) 

 Solution: Reorder operations to 
combine writing block headers 
with block payloads, so that 
"holes" are not written into the 
file during the writing of block 
headers, to be filled when writing 
block payloads 

 Result: Less than 25% of time 
spent writing output, output time 
4X shorter, overall run time 1.7X 
shorter 

 Impact: Enabled parallel Morse-
Smale computation to scale to 32K 
processes on Rayleigh-Taylor 
instability data 
 

Processes I/O Time (s) Total Time (s) 

8,192 7 60 

16,384 6 40 

32,768 7 33 
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I/O Understanding Takeaway 

 Scalable tools like Darshan can yield useful insight 
– Identify characteristics that make applications successful 
   …and those that cause problems. 
– Identify problems to address through I/O research 

 Petascale performance tools require special considerations 
– Target the problem domain carefully to minimize amount of data 
– Avoid shared resources 
– Use collectives where possible 

 

 For more information, see: 
  http://www.mcs.anl.gov/research/projects/darshan 
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Changes in Data Analysis Workflows 
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High-level diagram of 10 Pflop IBM Blue Gene/Q system at Argonne Leadership Computing Facility 
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In Situ Analysis and Data Reduction: HACC 

 On the HPC side, analysis is increasingly 
performed during runtime to avoid 
subsequent I/O  

 HACC cosmology code employing 
Voronoi tessellation 

– Converts from particles into unstructured grid 
based on particle density 

– Adaptive, retains full dynamic range of input 
– DIY toolkit (open source) used to implement 

analysis routines 

 ParaView environment used for visual 
exploration, custom tools for analysis 
 

 
 

       Collaboration with Kitware and U. of Tennessee 
 

 

Voronoi tessellation reveals regions 
of irregular low-density voids amid 
high-density halos. 

ParaView plugin provides interactive 
feature exploration. 
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Many thanks to: 
 
Ning Liu 
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Chris Carothers 
Rensselear Polytechnic Institute  

 
 
Jason Cope 
DataDirect Networks 

In-System Storage 



Adding In System Storage to the Storage Model  

The inclusion of NVRAM storage in future systems is a compelling way to deal with 
the burstiness of I/O in HPC systems, reducing the peak I/O requirements for 
external storage. In this case the NVRAM is called a “burst buffer”. 
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What’s a Burst? 

 We quantified the I/O behavior by analyzing one month of 
production I/O activity on Blue Gene/P from December 2011 

– Application-level access pattern information with per process and per 
file granularity 

– Adequate to provide estimate of I/O bursts 

 
Project Procs Nodes Total 

Written 

Run Time 

(hours) 

Avg. Size and Subsequent Idle Time for Write Bursts>1 GiB 

Count Size Size/Node Size/ION Idle Time (sec) 

PlasmaPhysics 131,072 32,768 67.0 TiB 10.4 1 33.5 TiB 1.0 GiB 67.0 GiB 7554 
1 33.5 TiB 1.0 GiB 67.0 GiB end of job 

Turbulence1 131,072 32,768 8.9 TiB 11.5 5 128.2 GiB 4.0 MiB 256.4 MiB 70 
     1 128.2 GiB 4.0 MiB 256.4 MiB end of job 

     421 19.6 GiB 627.2 KiB 39.2 MiB 70 
AstroPhysics 32,768 8,096 8.8 TiB 17.7 1 550.9 GiB 68.9 MiB 4.3 GiB end of job 
     8 423.4 GiB 52.9 MiB 3.3 GiB 240 
     37 131.5 GiB 16.4 MiB 1.0 GiB 322 
     140 1.6 GiB 204.8 KiB 12.8 MiB 318 

Turbulence2 4,096 4,096 5.1 TiB 11.6 21 235.8 GiB 59.0 MiB 3.7 GiB 1.2 
     1 235.8 GiB 59.0 MiB 3.7 GiB end of job 
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Studying Burst Buffers with Parallel Discrete Event 

Simulation 
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Burst Buffers Work for Multi-application Workloads 

 Burst buffers improve 
application perceived 
throughput under mixed I/O 
workloads. 

 Applications’ time to solution 
decrease with burst buffers 
enabled (from 5.5 to 4.4 
hours) 

 Peak bandwidth of the 
external I/O system may be 
reduced by 50% without a 
perceived change on the 
application side 

 Tool for co-design 
 

Application perceived I/O rates, with no 

burst buffer (top), burst buffer (bottom). 
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Beyond Burst Buffers 

 Obviously lots of other potential uses 
– Checkpointing location 
– Out-of-core computation 
– Holding area for analysis data (e.g., temporal analysis, in situ) 
– Code coupling 
– Input data staging 
– … 

 Improves memory capacity of systems 
– More data intensive applications? 

 
 Placement of NVRAM will matter 

– On I/O forwarding nodes (as in our example) 
– On some/all compute nodes? 
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Wrapping Up 



Wrapping Up 

 HPC storage is a complex hardware/software system 
 Some effort is necessary to make best use of these resources 
 Many tools are available to: 

– Increase productivity 
– Improve portability of data and capture additional provenance 
– Assist in understanding performance problems 

 We hope we have shed some light on these systems 

 
Thanks for spending the day with us! 

 
 

 See you after dinner for more discussion, maybe some 
hacking? 
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